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Abstract 
This paper proposes a novel model and dataset for 3D 

scene flow estimation with an application to autonomous 

driving. Taking advantage of the fact that outdoor scenes 

often decompose into a small number of independently 

moving objects, we represent each element in the scene by 

its rigid motion parameters and each superpixel by a 3D 

plane as well as an index to the corresponding object. This 

minimal representation increases robustness and leads to 

a discrete-continuous CRF where the data term 

decomposes into pairwise potentials between superpixels 

and objects. Moreover, our model intrinsically segments 

the scene into its constituting dynamic components. We 

demonstrate the performance of our model on existing 

benchmarks as well as a novel realistic dataset with scene 

flow ground truth. We obtain this dataset by annotating 

400 dynamic scenes from the KITTI raw data collection 

using detailed 3D CAD models for all vehicles in motion. 

Our experiments also reveal novel challenges which 

cannot be handled by existing methods. 

Keywords: 3D Scene Flow, KITTI, CRF. 

1. Introduction 

“Most of the structures in the visual world are rigid or 

at least nearly so.” David Marr [20] 

The estimation of dense 3D motion fields, widely 

termed scene flow, is currently gaining increasing 

attention. Dense motion vectors yield insights into the 

geometric layout of a scene as well as its decomposition 

into individually moving objects. Important applications 

include mobile robotics and autonomous driving where 3D 

object motion is a fundamental input to high-level tasks 

such as scene understanding, obstacle avoidance or path 

planning [5,7,10,28]. In this paper, we are interested in 3D 

scene flow estimation with a focus on autonomous driving. 

While a number of methods have recently demonstrated 

impressive performance in this context [25,35,37,39], none 

of them explicitly takes advantage of the fact that such 

scenes can often be considered as a 

small collection of independently moving 3D objects 

which 

 

Figure 1: Scene Flow Results on the proposed Dataset. 

Top-to-bottom: Estimated moving objects with 

background object in transparent, flow results and flow 

ground truth. 

include the background motion caused by the moving 

camera itself. See Fig. 1 for an illustration. Furthermore, 

due to the absence of realistic benchmarks with scene flow 

ground truth, quantitative evaluations are restricted to 

synthetic images [18,39] or static scenes such as the ones 

provided by the Middlebury stereo benchmark [27] or the 

KITTI stereo and optical flow evaluation [12]. 
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The contribution of this paper is twofold: First, we 

propose a slanted-plane scene flow model that explicitly 

reasons about objects while not relying on particular shape 

models or pre-trained detectors. In contrast to [35, 37], we 

model the 3D structure of the scene as a collection of 

planar patches and the 3D motion of these patches by a 

small number of rigidly moving objects which we 

optimize jointly. This significantly reduces the parameter 

space and constrains some of the problems in textureless 

or ambiguous regions. Besides, our method also outputs a 

segmentation of the scene into independently moving 

objects. Second, we present a novel and realistic dataset 

for quantitative scene flow evaluation. Towards this goal, 

we collected 400 highly dynamic scenes from the KITTI 

raw dataset and augmented them with semi-dense scene 

flow ground truth: We extract disparity maps directly from 

the 3D information in the laser scans and fit geometrically 

accurate CAD models to moving 3D point clouds to obtain 

optical flow ground truth. Furthermore, we provide a 

meaningful evaluation metric that considers depth and 

motion jointly. 

The performance of the proposed method and the 

importance of its individual components are demonstrated 

with respect to a representative set of state-of-the-art 

baselines as well as in various ablation studies, leveraging 

the proposed dataset, the KITTI stereo and optical flow 

benchmark and a synthetic sequence of a rotating sphere. 

Besides demonstrating the value of our assumptions for 

this task, our experiments also show that the proposed 

benchmark offers novel challenges which are not handled 

by any existing scene flow or optical flow algorithm. We 

make our code
1 
and dataset

2 
online available. 

2. Related Work 

In this section, we first review related work on scene 

flow estimation followed by an overview over existing 

datasets for benchmarking scene flow approaches. 

Methods: Scene flow is commonly defined as a flow field 

describing the 3D motion at every point in the scene. 

Following the seminal work by Vedula et al. [33, 34], the 

problem is traditionally formulated in a variational setting 

[1, 18, 23, 32, 36, 38] where optimization proceeds in a 

coarse-to-fine manner and local regularizers are leveraged 

to encourage smoothness in depth and motion. With the 

advent of RGB-D sensors like the Microsoft Kinect, depth 

information has also become available [15,17,24,39]. 

While the Kinect sensor works well for indoor scenes, in 

this paper we are interested in outdoor scene flow 

estimation with an application to autonomous driving 

[9,25] and thus focus on appearance-based methods. 

Inspired by recent trends in optical flow [21,30,40,41] 

and stereo [2,3,42], Vogel et al. [35,37] proposed a 

slantedplane model which assigns each pixel to an image 

segment and each segment to one of several rigidly 

moving 3D plane proposals, thus casting the task as a 

discrete optimization problem which can be solved using 

α-expansion and QPBO [26]. Impressive performance has 

been demonstrated in challenging street scenes
3 

as well as 

on the KITTI stereo and optical flow benchmarks [12]. 

Our method (which we termed “Object Scene Flow”) is 

related to this line of work, but goes one step further: 

Following Occam’s razor, we take advantage of the fact 

that many scenes decompose into a small number of 

rigidly moving objects and the background. We jointly 

estimate this decomposition as well as the motion of the 

objects and the plane parameters of each superpixel in the 

image. In contrast to [35, 37] where all shape and motion 

proposals are fixed a-priori, we optimize the continuous 

variables in our model jointly with the object assignments. 

Besides obtaining a segmentation of the objects according 

to their motion, the scene flow in our model is uniquely 

determined by only 4 parameters per superpixel (3 for its 

geometry and 1 for the object index) as well as a small 

number of parameters for each moving object. 

Datasets: Quantitative evaluation of scene flow methods 

suffers from a shortage of appropriate reference data. One 

reason for this is that no sensor exists which is capable of 

capturing optical flow ground truth in complex 

environments. Therefore, synthetic renderings of spheres 

[18,32], primitives [1,6,36] or simple street scenes 

[25,38,39] are typically employed to measure quantitative 

performance. Towards more realism, recent methods 

[8,14,24] report results on the Middlebury benchmark [27] 

by selecting a set of rectified stereo pairs. Similarly, the 

more challenging KITTI benchmark [12] has been 

leveraged for evaluation in [35,37]. Unfortunately, both 

benchmarks provide scene flow ground truth only for rigid 

scenes without independently moving objects. 

Furthermore, the scene flow evaluations based on the 

Middlebury stereo dataset are restricted to motions in x-

direction of the image and evaluations on KITTI treat the 

flow and stereo problem separately. 

To the best of our knowledge, there currently does not 

exist any realistic benchmark dataset providing dynamic 

objects and ground truth for the evaluation of scene flow 

or optical flow approaches. In this paper, we take 

advantage of the KITTI raw data [11] to create a realistic 

and challenging scene flow benchmark with independently 

moving objects and annotated ground truth, comprising 

200 training and 200 test scenes in total. We hope that our 



International Journal of Engineering Sciences Paradigms and Researches (Vol. 27, Issue 02) and (Publishing Date: January 2016) 

                        www.ijesonline.com  

(ISSN: 2319-6564) 
26 

 

data collection will stimulate further research on this 

important topic. 

The remainder of this paper is structured as follows: 

We first introduce our “Object Scene Flow” approach in 

Section 3, followed by details on the ground truth 

annotation process for our dataset in Section 4. Finally, we 

show quantitative and qualitative results of our method 

and several state-of-the-art baselines on three datasets in 

Section 5. We conclude with an outlook on future work in 

Section 6. 

3. Object Scene Flow 

We focus on the classical scene flow setting where the 

input is given by two consecutive stereo image pairs of a 

calibrated camera and the task is to determine the 3D 

location and 3D flow of each pixel in a reference frame. 

We employ a slanted-plane model, i.e., we assume that the 

3D structure of the scene can be approximated by a set of 

piecewise planar superpixels [41]. Furthermore, we 

assume a finite number of ridigly moving objects in the 

scene. It is 

 

Figure 2: Data Term. Each superpixel i in the reference 

view is modeled as a rigidly moving 3D plane and warped 

into each other image to calculate matching costs. Each of 

the superpixels is associated with a 3D plane variable and 

a pointer to an object hypothesis comprising its rigid 

motion. 

important to note that the static elements in the scene (the 

“background”) can be easily handled as yet another object 

in our formulation as these elements move rigidly with 

respect to the observer. 

More formally, let S and O denote the set of superpixels 

and objects, respectively. Each superpixel i ∈ S is 

associated with a region Ri in the image and a random 

variable si = (ni,ki)T where ni ∈ R3 describes a plane in 3D 

(nT
i x = 1 for x ∈ R3 on the plane) and ki ∈ {1,...,|O|} indexes 

the object which the superpixel is associated with. Each 

object i ∈ O is associated with a random variable oi ∈ 

SE(3) which describes its rigid body motion in 3D. Note 

that each superpixel associated with object i inherits its 

rigid motion parameters oi ∈ SE(3). In combination with 

the plane parameters ni, this fully determines the 3D scene 

flow at each pixel inside the superpixel. 

Given the left and right input images of two 

consecutive frames t0 and t1, our goal is to infer the 3D 

geometry of each superpixel ni, the association to objects 

ki and the rigid body motion of each object oi. We specify 

our CRF in terms of the following energy function 

 (1) 

 smoothness 

where s = {si|i ∈ S}, o = {oi|i ∈ O}, and i ∼ j denotes the set 

of adjacent superpixels in S. 

3.1. Data Term 

The data term models the assumption that 

corresponding points across the four images should be 

similar in appearance. As ki determines the association of 

superpixel i to an object, our data term decomposes into 

pairwise potentials 

 ϕi(si,o) = X [ki = j] · Di(ni,oj) (2) 

j∈O 

where [·] denotes the Iverson bracket and Di(n,o) 

represents the data term at superpixel i which depends on 

plane parameters n and rigid body motion o. The data 

term itself is composed of a stereo, flow and a cross term, 

calculated between a reference view (left image at t0) and 

all other images as illustrated in Fig. 2: 

Di(n,o) = Distereo(n,o) + Diflow(n,o) + Dicross(n,o) 

Each of these terms is defined by summing the matching 

costs of all pixels p inside superpixel i, where matching 

costs are computed by warping each pixel according to the 

homography induced by the associated object o: 

Di
x(n,o) = X Cx p, K  Rx 3 

3× homography 
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 p∈Ri | 3 3 

Here, x ∈ {stereo,flow,cross}, K ∈ R × denotes the camera 

calibration matrix and [Rx(o)|tx(o)] ∈ R3×4 maps a 3D 

point in reference coordinates to a 3D point in another 

camera coordinate system according to the extrinsic 

camera calibration and the rigid motion o. The matching 

cost Cx(p,q) returns a dissimilarity value between a pixel 

at location p ∈ R2 in the reference image and a pixel at 

location q ∈ R2 in the target image. In our model, we take 

advantage of dense as well as sparsely matched image 

features and define Cx(p,q) as a weighted sum of these 

two: 

 

For  we leverage the Hamming distance of the 

respective 5×5 Census descriptors [43], truncated at Cmax. 

We further use an outlier value of C = Cmax for q’s leaving 

the image domain. The same parameter value Cmax is used 

for stereo, flow and cross terms. Our sparse matching term 

is defined as 

Cxsparse(p,q) =ρτ1 (kπx(p) − qk2) if p 

∈ Πx 0 otherwise 

where πx(p) denotes the warping of pixel p according to 

the set of sparse feature correspondences, Πx is the set of 

pixels in the reference image for which correspondences 

have been established, and ρτ(x) denotes the truncated l1 

penalty function ρτ(x) = min(|x|,τ). Details on the sparse 

feature correspondences we use will be given in Section 5. 

3.2. Smoothness Term 

The smoothness term encourages coherence of adjacent 

superpixels in terms of depth, orientation and motion. Our 

smoothness potential ψij(si,sj) decomposes as: 

 ψij(si,sj) = θ3 ψijdepth(ni,nj) + (3) 

θ4 ψijorient(ni,nj) + θ5 ψijmotion(si,sj) 

with weights θ and 

 

ψijmotion(si,sj) = w(ni,nj) · [ki 6= kj] 

Here, d(n,p) denotes the disparity of plane n at pixel p in 

the reference image, Bij is the set of shared boundary pixels 

between superpixel i and superpixel j, and ρ is the robust l1 

penalty as defined above. The weight w(·,·) is defined as 

 

and encodes our belief that motion boundaries are more 

likely to occur at 3D folds or discontinuities than within 

smooth surfaces. 

3.3. Inference 

Optimization of the discrete-continuous CRF specified 

in Eq. 1 with respect to all superpixels and objects is an 

NP-hard problem and we leverage max-product particle 

belief propagation (MP-PBP) [22, 31] using sequential 

treereweighted message passing (TRW-S) [19] for the 

inner loop to find an approximate solution. We use 30 

shape particles per superpixel, five objects, ten motion 

particles per object and 50 iterations of MP-PBP. All 

motion particles and half of the shape particles are drawn 

from a normal distribution centered at the MAP solution of 

the last iteration. The remaining shape particles are 

proposed using the plane parameters from spatially 

neighboring superpixels. Both strategies complement each 

other and we found their combination important for 

efficiently exploring the search space. We initialize all 

superpixels and their shapes using the StereoSLIC 

algorithm [41]. Rigid body motions are initialized by 

greedily extracting motion estimates from sparse scene 

flow vectors [13] as follows: We iteratively estimate rigid 

body motions using the 3-point RANSAC algorithm and 

find subsets with a large number of inliers using 

nonmaxima suppression. For further details, we refer the 

reader to the supplementary material
4
. 

4. Scene Flow Dataset and Annotation 

In absence of appropriate public datasets we annotated 

400 dynamic scenes from the KITTI raw dataset with op- 

( 
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 Before Optimization After Optimization 

Figure 3: Annotation. This figure shows the subsampled 

CAD model (green), the observations used for registering 

the model (red), as well as the corresponding disparity 

map (last row) before (left) and after (right) minimizing 

Eq. 4. 

tical flow and disparity ground truth in two consecutive 

frames. The process of ground truth generation is 

especially challenging in the presence of individually 

moving objects since they cannot be easily recovered from 

laser scanner data alone due to the rolling shutter of the 

Velodyne and the low framerate (10 fps). Our annotation 

work-flow consists of two major steps: First, we recover 

the static background of the scene by removing all 

dynamic objects and compensating for the vehicle’s 

egomotion. Second, we re-insert the dynamic objects by 

fitting detailed CAD models to the point clouds in each 

frame. 

4.1. Static Scene Elements 

In order to derive a dense point cloud of the static scene 

content the laser scans are first corrected for the rolling 

shutter effect using the camera motion and the timestamps 

of the individual laser measurements. We found that 

neither the GPS/IMU system of the KITTI car nor ICP 

fitting of 3D point clouds alone yields sufficiently accurate 

motion estimates and thus combine both techniques using 

non-linear least-squares optimization to retrieve a highly 

accurate and consistent registration of the individual scans. 

Overall, we accumulate 7 scans over time in a common 

coordinate system. We further remove all 3D points 

belonging to moving objects using the 3D bounding box 

annotations provided on the KITTI website
5
. 

4.2. Moving Objects 

As the dynamic elements in the scene cannot be 

recovered from 3D laser measurements alone, we leverage 

detailed 3D CAD models from Google 3D Warehouse
6 
for 

this purpose. It is important to note that given the limited 

measurement accuracy of stereo techniques our 3D CAD 

models are not required to be millimeter-accurate, which 

would be intractable considering the broad variety of 

vehicles in KITTI. Instead, we select the most similar 

model from a limited but diverse set of 16 vehicles which 

we illustrate in the supplementary material. For each 

model, we obtain a 3D point cloud by uniformly sampling 

∼ 3,000 points from all faces of the CAD model. We use 

this point cloud for fitting the 3D CAD model to both 

frames of the sequence using 2D and 3D measurements as 

illustrated in Fig. 3. 

More specifically, for each dynamic object in the scene, 

we estimate a 3D similarity transformation defining the 

pose and scale of the 3D model in the first frame as well as 

the 3D rigid body motion of the object, yielding a 

15dimensional parameter vector ξ ∈ R15. We leverage 

three different types of observations: First, we accumulate 

3D points belonging to a moving object over all frames 

using the annotated 3D bounding boxes. Second, we 

incorporate disparity estimates computed by semi-global 

matching (SGM) [16]. While SGM estimates are not 

always reliable, we only optimize for a very small number 

of parameters and found (by manual verification) that 

including this term as a weak prior improves results. As a 

third observation, we introduce manually annotated 

correspondences between geometrically meaningful parts 

of the 3D CAD model and the corresponding image 

coordinates in both frames. We found that including 5 to 

10 such correspondences per object is sufficient for 

obtaining accurate optical flow ground truth. 

We obtain the transformation parameters ξ by 

minimizing the following energy function 

 E(ξ) = X12 Et3D + EtSGM + Et2D (4) 

t∈{ , } 
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where t is the frame index and Et are the energy terms 

corresponding to each of the observations, see Fig. 3 for 

an illustration. More specifically, Et
3D denotes the average 

truncated l2 distance between the 3D laser points inside the 

object’s 3D bounding box and their nearest neighbors in 

the CAD model, Et
SGM represents the truncated l1 distance 

between the disparity map induced by the CAD model and 

the SGM measurements and Et
2D is the quadratic 2D error 

with respect to the selected 2D − 3D correspondences in 

frame t. Our optimization scheme alternates between 

minimizing Eq. 4 with respect to ξ using non-linear least-

squares and updating all nearest neighbor associations 

until convergence. The weights of the terms are chosen to 

ensure a dominating influence of the manual input. 

For generating the final disparity and optical flow maps 

we project a more densely sampled 3D CAD model into 

all four images according to the estimated ξ. For resolving 

intra- and inter-occlusions of objects we leverage 

OpenGL’s z-buffer. Finally, non-rigidly moving objects 

like pedestrians or bicyclists and erroneous regions in the 

laser scans are manually masked. All resulting flow and 

disparity maps are validated by visual inspection. In 

addition, critical cases are identified and excluded by 

sparse, manually annotated control points. While we 

empirically found that for most parts our ground truth is at 

least 3 pixels accurate, we observed that very large 

motions at the image boundaries (up to 500 pixels) 

degrade the accuracy of the ground truth. We thus design a 

scene flow evaluation metric which takes these error 

characteristics into account as discussed below. 

5. Experimental Results 

This section provides a thorough quantitative and 

qualitative analysis of our model on the proposed scene 

flow dataset, the KITTI stereo/flow evaluation [12] as well 

as the synthetic sphere sequence of Huguet et al. [18]. As 

input to our method, we leverage sparse optical flow from 

feature matches [13] and SGM disparity maps [16] for 

both rectified frames. Sparse cross features are computed 

by combining the optical flow matches with valid 

disparities from the SGM maps. We obtain superpixels 

using StereoSLIC [41] and initialize the rigid motion 

parameters of all objects in the scene by greedily 

extracting rigid body motion hypotheses using the 3-point 

RANSAC algorithm implemented in [13]. In order to 

obtain the model parameters {θ} and {τ}, we perform block 

coordinate descent on a subset of 30 randomly selected 

training images. For details on the estimated parameter 

values we refer the reader to the supplementary material. 

Evaluation Protocol: For our results on the KITTI 

benchmark we follow the standard evaluation protocol and 

provide stereo and optical flow outliers separately using an 

error threshold of 3 pixels. For the proposed scene flow 

dataset, we annotated a total of 200 training and 200 test 

scenes from the KITTI raw dataset [11] using the method 

described in Section 4 and evaluate both disparity errors 

and the flow at each valid ground truth pixel in the 

reference view. We only count errors if the disparity or 

flow exceeds 3 pixels and 5% of its true value. 

Empirically, we found that this combination ensures an 

evaluation which is faith- 

 

Figure 4: Performance. This figure shows the scene flow 

errors of our method on the proposed dataset with respect 

to the number of object proposals and MP-PBP iterations. 

 [32] [18] [39] [37] Ours 

RMSE 2D Flow 0.63 0.69 0.77 0.63 0.55 

RMSE Disparity 3.8 3.8 10.9 2.84 2.58 

RMSE Scene 

Flow 

1.76 2.51 2.55 1.73 0.75 

Table 1: RMS Errors on the “Sphere” Sequence [18]. 

ful with respect to the annotation errors in the ground 

truth. For methods which provide their second disparity 

estimate directly in the second frame we leverage the 

estimated optical flow for mapping the disparity values to 

the corresponding pixels in the first frame and apply 

background interpolation [12] for all missing pixels. Thus 

at each pixel in the reference view, we obtain four values 

which we evaluate and which uniquely determine the 3D 

scene flow: two disparity values (first and second frame) 

and the flow in u- and v-direction. We also evaluate the 

combination of all three measures in a single scene flow 

metric which considers only pixels with correct disparities 

and flow as correct. We evaluate results by averaging 

errors over all image regions as well as over all regions 

which do not leave the image domain. 

Ablation Studies: We first assess the contribution of each 

individual term in our energy formulation in Eq. 1 on the 

proposed scene flow dataset. Table 2 (lower part) shows 
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the results when evaluating the whole image. Results for 

non-occluded regions can be found in the supplementary 

material. The columns show errors in terms of disparity 

(“D1”, “D2”), flow (“Fl”) and scene flow (“SF”) using the 

conventions specified above. For each modality we 

provide results in terms of the background (“bg”), 

foreground (“fg”) as well as the combination of both 

(“bg+fg”). The first row of the table shows the results of 

our model when only including the unary terms. The 

remaining rows show results for different combinations of 

unary and pairwise terms with the full model at the 

bottom. While Census proves to be a stronger feature than 

sparse optical flow in combination with SGM, their 

combination outperforms each of them individually in 

terms of scene flow error. The experiments also reveal that 

the boundary term is the strongest pairwise cue while 

again the combination of all pairwise terms yields the 

overall best scene flow results. 

Next, we investigate the performance of our full model 

with respect to the size of the object set in Fig. 4 (left). 

Towards this goal, we decrease the number of allowed 

object hypotheses in our model from 5 to 1. This plot 

affirms our assumption that the outdoor scenes we 

consider can be well described by a small number of 

rigidly moving objects. Finally, Fig. 4 (right) shows the 

performance of our method with respect to the number of 

MP-PBP iterations. While we use 50 iterations for all our 

experiments in practice, this plot shows that 10 iterations 

are sufficient for achieving almost optimal performance 

under our model. 

Baseline Results: Table 2 (upper part) compares the results 

of our method (last line) to several baselines on our novel 

scene flow dataset. We interpolate the results of sparse and 

semi-dense methods using the KITTI stereo/flow 

development kit to ensure a fair comparison. Besides the 

classic variational approach of Huguet et al. [18], we also 

compute results for the sparse scene flow method of Cech 

et al. [6]. We further construct several baselines by 

combining two state-of-the-art optical flow algorithms [4, 

29] with disparity estimates in both frames obtained using 

semiglobal matching (SGM) [16] which also serves as 

input to our method. As a representative for RGB-D based 

algorithms we show the results of Hornacek’s Sphere 

Flow [17] which have been provided to us by the authors. 

To emulate the required depth component we reproject all 

valid pixels of SGM disparity maps into 3D. Finally, we 

also include the results of Vogel’s piece-wise rigid scene 

flow (PRSF) approach [37]. We note that the proposed 

approach strictly outperforms all baselines with PRSF 

being the closest competitor. 

Qualitative Results: Fig. 5 provides qualitative results for 

some of the scenes in the proposed dataset using similar 

color mappings as in KITTI [12]. Note however, that the 

percentage error is mapped so that inliers according to our 

scene flow metric are depicted in blue shades. As 

evidenced by the error images, our method is able to 

recover the correct disparity and flow in a variety of 

challenging scenes. Even objects which are not perfectly 

rigid (and for which no ground truth exists) such as the 

bicyclist in subfigure (2,2) are robustly detected by our 

method. Some failure cases of our method are illustrated 

below the horizontal line. Those scenes are extremely 

challenging due to difficult lighting conditions or quickly 

moving objects in the vicinity of the observer and none of 

the algorithms in our evaluation was able to cope with 

these challenges. 
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Results on the KITTI Benchmark: We also evaluated our 

model on the static scenes of the KITTI stereo and optical 

flow benchmark [12] and rank amongst the top 5 methods 

in each category. Using the 3 pixels evaluation threshold, 

we achieve 3.28 % errors for stereo and 3.47 % errors for 

optical flow, comparing favorably with respect to PRSF. 

All details and the full result tables are provided in the 

supplementary material. 

Results on the “Sphere” Dataset: For completeness we 

provide results of our method on the synthetic “Sphere” 

dataset by Huguet et al. [18]. As this dataset resembles a 

random dot stereogram, appearance does not convey 

information about object boundaries. We thus modify the 

StereoSLIC algorithm to consider dense optical flow 

instead of disparity and provide the Horn-Schunck results 

of Sun et al. [29] as input. As illustrated in Table 1 our 

method performs surprisingly well despite the fact that we 

restrict the scene to only 200 planar superpixels. 

Qualitative results and error maps are shown in the 

supplementary material. 

Runtime: Our non-optimized MATLAB implementation 

with C++ wrappers requires on average 60 seconds for 

each of the 50 MP-PBP iterations. This yields a total 

runtime of 50 minutes for processing one scene (4 images) 

on a single i7 core running at 3.0 Ghz. By restricting the 

number of shape and motion particles to 10 and 5, 

respectively, and by setting the number of MP-PBP 

iterations to 10, we are able to reduce the total runtime of 

our algorithm to 120 seconds. The entry ’Fast’ in Table 2 

shows that the modified version performs only slightly 

worse than the full method presented in the paper, but still 

compares favorably with respect to the closest state-of-the-

art competitor. 

Supplementary Material: We encourage the reader to have 

a look at the supplementary material
7 

which provides an 

analysis of performance with respect to variation of 

parameters, and additional quantitative and qualitative 

results. 

6. Conclusion 

We have demonstrated the benefits of modeling 

dynamic outdoor scenes as a collection of rigid objects. By 

reasoning jointly about this decomposition as well as the 

geometry and motion of a small number of objects in the 

scene the proposed model is able to produce accurate 

dense 3D scene flow estimates, comparing favorably with 

current state-ofthe-art on several datasets. We have further 

introduced the first realistic and large-scale scene flow 

  D1   D2   Fl   SF  

 bg fg bg+fg bg fg bg+fg bg fg bg+fg bg fg bg+fg 

Huguet [18] 27.31 21.71 26.38 59.51 44.92 57.08 50.06 47.57 49.64 67.69 64.03 67.08 

GCSF [6] 11.64 27.11 14.21 32.94 35.76 33.41 47.38 45.07 47.00 52.92 59.11 53.95 

SGM [16] + LDOF [4] 5.15 15.27 6.83 29.58 23.47 28.56 41.07 35.52 40.15 43.99 44.77 44.12 

SGM [16] + Sun [29] 5.15 15.27 6.83 28.77 25.64 28.25 34.83 45.46 36.60 38.21 53.03 40.68 

SGM [16] + Sphere Flow [17] 5.15 15.27 6.83 14.10 23.12 15.60 20.91 28.89 22.24 23.09 37.11 25.42 

PRSF [37] 4.74 13.73 6.24 11.14 20.47 12.69 11.73 27.72 14.39 13.49 33.71 16.85 

Unary (SGM+SpF) 5.26 14.40 6.78 6.48 28.67 10.17 8.25 37.03 13.04 10.15 42.58 15.54 

Unary (Census) 6.89 19.22 8.95 8.01 25.35 10.90 7.71 26.63 10.86 9.69 35.34 13.96 

Unary (All) 6.08 16.70 7.85 7.15 23.72 9.91 7.17 25.97 10.29 8.93 33.79 13.06 

Unary (All) + Pair (Boundary) 4.58 10.60 5.58 5.58 19.34 7.87 5.88 23.90 8.88 7.28 30.00 11.06 

Unary (All) + Pair (Normal) 5.70 16.01 7.42 6.77 23.42 9.54 6.86 25.68 9.99 8.54 33.47 12.69 

Unary (All) + Pair (Object) 6.23 17.86 8.16 7.24 23.99 10.03 7.14 24.92 10.10 8.93 33.09 12.95 

Unary (SGM+SpF) + Pair 

(All) 

6.60 25.71 9.78 7.81 33.94 12.16 9.54 37.43 14.19 11.59 44.25 17.03 

Unary (Census) + Pair (All) 4.67 12.37 5.95 5.58 19.74 7.94 5.66 22.57 8.47 7.09 29.37 10.79 

Unary (All) + Pair (All) Fast 4.45 12.73 5.83 5.41 20.12 7.85 5.71 23.57 8.68 7.14 30.48 11.03 

Unary (All) + Pair (All) 4.54 12.03 5.79 5.45 19.41 7.77 5.62 22.18 8.37 7.01 28.76 10.63 

Table 2: Quantitative Results on the Proposed Scene Flow Dataset. This table shows the disparity (D1/D2), flow (Fl) and 

scene flow (SF) errors averaged over all 200 test images. For each modality we separately provide the errors for the 

background region (bg), all foreground objects (fg) as well as all pixels in the image (bg+fg). 
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dataset with ground truth annotations for all static and 

dynamic objects in the scene. Compared to KITTI 

stereo/flow, our benchmark provides dynamic objects and 

a dedicated scene flow measure as well as novel 

challenges to the community. In particular, we found that 

none of the existing optical flow or scene flow methods is 

able to cope with the extreme motions produced by 

moving objects in some of our scenes. A second source of 

failure are textureless and reflecting surfaces where often 

both, stereo matching and optical flow estimation fails. We 

conjecture that more expressive priors are required to 

overcome these challenges and believe that our dataset 

will stimulate further research towards solving these 

problems. 
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Figure 5: Qualitiative Results. Each subfigure shows from top-to-bottom: disparity and optical flow ground truth in the 

reference view, the disparity map (D1) and optical flow map (Fl) estimated by our algorithm, and the respective error 
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images using the color scheme depicted in the legend. The four scenes below the horizontal line are failure cases. See text 

for details. 
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